Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole–imidazole polyamide, which targets an E-box motif

نویسندگان

  • Masashi Taniguchi
  • Kyoko Fujiwara
  • Yuji Nakai
  • Toshinori Ozaki
  • Nobuko Koshikawa
  • Kojima Toshio
  • Motoaki Kataba
  • Asako Oguni
  • Hiroyuki Matsuda
  • Yukihiro Yoshida
  • Yasuaki Tokuhashi
  • Noboru Fukuda
  • Takahiro Ueno
  • Masayoshi Soma
  • Hiroki Nagase
چکیده

Gene amplification and/or overexpression of the transcription factor c-MYC, which binds to the E-box sequence (5'-CACGTG-3'), has been observed in many human tumors. In this study, we have designed 5 pyrrole-imidazole (PI) polyamides recognizing E-box, and found that, among them, Myc-6 significantly suppresses malignant phenotypes of human osteosarcoma MG63 cells both in vitro and in vivo. Intriguingly, knockdown of the putative Myc-6 target MALAT1 encoding long noncoding RNA remarkably impaired cell growth of MG63 cells. Collectively, our present findings strongly suggest that Myc-6 exerts its tumor-suppressive ability at least in part through the specific down-regulation of MALAT1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a novel E-box binding pyrrole-imidazole polyamide inhibiting MYC-driven cell proliferation

The MYC transcription factor plays a crucial role in the regulation of cell cycle progression, apoptosis, angiogenesis, and cellular transformation. Due to its oncogenic activities and overexpression in a majority of human cancers, it is an interesting target for novel drug therapies. MYC binding to the E-box (5'-CACGTGT-3') sequence at gene promoters contributes to more than 4000 MYC-dependent...

متن کامل

Nuclear Localization and Gene Expression Modulation by a Fluorescent Sequence-Selective p-Anisyl-benzimidazolecarboxamido Imidazole-Pyrrole Polyamide.

Synthetic pyrrole (P)-imidazole (I) containing polyamides can target predetermined DNA sequences and modulate gene expression by interfering with transcription factor binding. We have previously shown that rationally designed polyamides targeting the inverted CCAAT box 2 (ICB2) of the topoisomerase IIα (topo IIα) promoter can inhibit binding of transcription factor NF-Y, re-inducing expression ...

متن کامل

Tumor Repression of VCaP Xenografts by a Pyrrole-Imidazole Polyamide

Pyrrole-imidazole (Py-Im) polyamides are high affinity DNA-binding small molecules that can inhibit protein-DNA interactions. In VCaP cells, a human prostate cancer cell line overexpressing both AR and the TMPRSS2-ERG gene fusion, an androgen response element (ARE)-targeted Py-Im polyamide significantly downregulates AR driven gene expression. Polyamide exposure to VCaP cells reduced proliferat...

متن کامل

Low-Density Lipoprotein Receptor-1 Attenuates Restenosis of the Artery After Injury Novel Gene Silencer Pyrrole-Imidazole Polyamide Targeting Lectin-Like Oxidized

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a membrane protein that can support the binding, internalization, and proteolytic degradation of oxidized low-density lipoprotein. The LOX-1 expression increases in the neointima after balloon injury. To develop an efficient compound to inhibit LOX-1, we designed and synthesized a novel gene silencer pyrrole-imidazole (PI) polya...

متن کامل

Novel gene silencer pyrrole-imidazole polyamide targeting lectin-like oxidized low-density lipoprotein receptor-1 attenuates restenosis of the artery after injury.

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a membrane protein that can support the binding, internalization, and proteolytic degradation of oxidized low-density lipoprotein. The LOX-1 expression increases in the neointima after balloon injury. To develop an efficient compound to inhibit LOX-1, we designed and synthesized a novel gene silencer pyrrole-imidazole (PI) polya...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014